
MUFFAKHAM JAH COLLEGE OF ENGINEERING AND
TECHNOLOGY

Banjara Hills, Hyderabad, Telangana

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Compiler Construction Laboratory Manual

Academic Year 2016-2017

Table of Contents

I Contents
1. Vision of the Institution . i
2. Mission of the Institution . i
3. Department Vision . ii
4. Department Mission . ii
5. Programme Education Objectives . iii
6. Programme Outcomes . iv
7. Programme Specific Outcomes . v
8. Introduction . vi

II Programs
1. Scanner programs using C . 1
2. Scanner programs Using LEX . 5
3. Finding FIRST and FOLLOW set of the production 7
4. Top Down parsers . 11
5. Bottom up Parsers (SLR PARSER) . 13
6. Parser program using YACC . 19
7. Intermediate Code generation . 22
8. Code Optimization . 24
9. Code Generation . 28
10. Annexure - I List of programs according to syllabus(Osmania University). 31

Part I

Contents

1. Vision of the Institution

To be part of universal human quest for development and progress by contributing high
calibre, ethical and socially responsible engineers who meet the global challenge of build-
ing modern society in harmony with nature.

2. Mission of the Institution

• To attain excellence in imparting technical education from undergraduate through
doctorate levels by adopting coherent and judiciously coordinated curricular and
co-curricular programs.

• To foster partnership with industry and government agencies through collaborative
research and consultancy.

• To nurture and strengthen auxiliary soft skills for overall development and improved
employability in a multi-cultural work space.

• To develop scientific temper and spirit of enquiry in order to harness the latent
innovative talents.

• To develop constructive attitude in students towards the task of nation building
and empower them to become future leaders

• To nourish the entrepreneurial instincts of the students and hone their business
acumen.

• To involve the students and the faculty in solving local community problems through
economical and sustainable solutions.

i

3. Department Vision

To contribute competent computer science professionals to the global talent pool to meet
the constantly evolving societal needs.

4. Department Mission

Mentoring students towards a successful professional career in a global environment
through quality education and soft skills in order to meet the evolving societal needs.

ii

5. Programme Education Objectives

1. Graduates will demonstrate technical skills and leadership in their chosen fields of
employment by solving real time problems using current techniques and tools.

2. Graduates will communicate effectively as individuals or team members and be
successful in the local and global cross cultural working environment.

3. Graduates will demonstrate lifelong learning through continuing education and pro-
fessional development.

4. Graduates will be successful in providing viable and sustainable solutions within
societal, professional, environmental and ethical contexts

iii

6. Programme Outcomes

1. Engineering knowledge: Apply the knowledge of mathematics, science, engi-
neering fundamentals and an engineering specialization to the solution of complex
engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze
complex engineering problems reaching substantiated conclusions using first prin-
ciples of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified needs
with appropriate consideration for the public health and safety, and the cultural,
societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge
and research methods including design of experiments, analysis and interpretation
of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources,
and modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowl-
edge to assess societal, health, safety, legal and cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsi-
bilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a mem-
ber or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with
the engineering community and with society at large, such as, being able to com-
prehend and write effective reports and design documentation, make effective pre-
sentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding
of the engineering and management principles and apply these to one’s own work,
as a member and leader in a team, to manage projects and in multidisciplinary
environments.

12. Lifelong learning: Recognize the need for, and have the preparation and ability to
engage in independent and lifelong learning in the broadest context of technological
change.

iv

7. Programme Specific Outcomes

The graduates will be able to:

PSO1: Demonstrate understanding of the principles and working of the hardware and
software aspects of computer systems.

PSO2: Use professional engineering practices, strategies and tactics for the development,
operation and maintenance of software

PSO3: Provide effective and efficient real time solutions using acquired knowledge in vari-
ous domains.

v

Compiler Construction Lab Manual

8. Introduction

OVERVIEW OF LANGUAGE PROCESSING SYSTEM

Preprocessor

A preprocessor produce input to compilers. They may perform the following functions.

1. M acro processing: A preprocessor may allow a user to define macros that are short
hands for longer constructs.

2. File inclusion: A preprocessor may include header files into the program text.

3. Rational preprocessor: these preprocessors augment older languages with more
modern flow-of-control and data structuring facilities.

4. Language Extensions: These preprocessor attempts to add capabilities to the lan-
guage by certain amounts to build-in macro

COMPILER

Compiler is a translator program that translates a program written in (HLL) the source
program and translate it into an equivalent program in (MLL) the target program. As
an important part of a compiler is error showing to the programmer.

CSE Department, MJCET vi

Compiler Construction Lab Manual

Executing a program written n HLL programming language is basically of two parts. the
source program must first be compiled translated into a object program. Then the results
object program is loaded into a memory executed.

ASSEMBLER:

programmers found it difficult to write or read programs in machine language. They
begin to use a mnemonic (symbols) for each machine instruction, which they would
subsequently translate into machine language. Such a mnemonic machine language is now
called an assembly language. Programs known as assembler were written to automate
the translation of assembly language in to machine language. The input to an assembler
program is called source program, the output is a machine language translation (object
program).
INTERPRETER:

An interpreter is a program that appears to execute a source program as if it were machine
language.

CSE Department, MJCET vii

Compiler Construction Lab Manual

Languages such as BASIC, SNOBOL, LISP can be translated using interpreters. JAVA
also uses interpreter. The process of interpretation can be carried out in following phases.

1. Lexical analysis

2. Synatx analysis

3. Semantic analysis

4. Direct Execution

Advantages:

• Modification of user program can be easily made and implemented as execution
proceeds.

• Type of object that denotes a various may change dynamically.

• Debugging a program and finding errors is simplified task for a program used for
interpretation.

• The interpreter for the language makes it machine independent.

Disadvantages:

• The execution of the program is slower.

• Memory consumption is more.

Loader and Link-editor:

Once the assembler procedures an object program, that program must be placed into
memory and executed. The assembler could place the object program directly in memory
and transfer control to it, thereby causing the machine language program to be execute.
This would waste core by leaving the assembler in memory while the user’s program
was being executed. Also the programmer would have to retranslate his program with
each execution, thus wasting translation time. To over come this problems of wasted
translation time and memory. System programmers developed another component called
loader

“A loader is a program that places programs into memory and prepares them for exe-
cution.” It would be more efficient if subroutines could be translated into object form
the loader could “relocate” directly behind the user’s program. The task of adjusting
programs they may be placed in arbitrary core locations is called relocation. Relocation
loaders perform four functions.

CSE Department, MJCET viii

Compiler Construction Lab Manual

TRANSLATOR

A translator is a program that takes as input a program written in one language and
produces as output a program in another language. Beside program translation, the
translator performs another very important role, the error-detection. Any violation of d
HLL specification would be detected and reported to the programmers. Important role
of translator are:

1. Translating the hll program input into an equivalent ml program.

2. Providing diagnostic messages wherever the programmer violates specification of
the hll.

TYPE OF TRANSLATORS:-

INTERPRETOR

COMPILER

PREPROSSESSOR

EXAMPLES OF COMPILERS

1. Ada compilers

2. ALGOL compilers

3. BASIC compilers

4. C# compilers

5. C compilers

6. C++ compilers

7. COBOL compilers

8. D compilers

9. Common Lisp compilers

10. ECMAScript interpreters

11. Eiffel compilers

12. Felix compilers

13. Fortran compilers

14. Haskell compilers

15. Java compilers

CSE Department, MJCET ix

Compiler Construction Lab Manual

16. Pascal compilers

17. PL/I compilers

18. Python compilers

19. Scheme compilers

20. Smalltalk compilers

21. CIL compilers

STRUCTURE OF THE COMPILER DESIGN

Phases of a compiler: A compiler operates in phases. A phase is a logically interrelated
operation that takes source program in one representation and produces output in another
representation. The phases of a compiler are shown in below There are two parts of
compilation.

1. Analysis (Machine Independent/Language Dependent)

2. Synthesis (Machine Dependent/Language independent) Compilation process is par-
titioned into no-of-sub processes called ‘phases’.

CSE Department, MJCET x

Compiler Construction Lab Manual

a. Lexical Analysis phase:- Lexical Analysis or Scanners reads the source pro-
gram one character at a time, carving the source program into a sequence of
automic units called tokens.

b. Syntax Analysis phase:- The second stage of translation is called Syntax
analysis or parsing. In this phase expressions, statements, declarations etc. . .
are identified by using the results of lexical analysis. Syntax analysis is aided
by using techniques based on formal grammar of the programming language.

c. Semantic analysis phase:- In this phase semantics of the program will be
checked. Ex: Type checking.

d. Intermediate Code Generation phase:- An intermediate representation of
the final machine language code is produced. This phase bridges the analysis
and synthesis phases of translation.

e. Code Optimization phase :- This is optional phase described to improve
the intermediate code so that the output runs faster and takes less space.

f. Code Generation phase:- The last phase of translation is code generation.
A number of optimizations to reduce the length of machine language program
are carried out during this phase. The output of the code generator is the
machine language program of the specified computer.

i. Table Management (or) Book-keeping:- This is the portion to keep
the names used by the program and records essential information about
each. The data structure used to record this information called a ‘Symbol
Table’.

ii. Error Handlers:- It is invoked when a flaw error in the source program
is detected.The output of LA is a stream of tokens, which is passed to
the next phase, the syntax analyzer or parser. The SA groups the tokens
together into syntactic structure called as expression. Expression may
further be combined to form statements. The syntactic structure can be
regarded as a tree whose leaves are the token called as parse trees.

CSE Department, MJCET xi

Compiler Construction Lab Manual

Lab Objective

The aim of this (compiler construction) lab is to provide a foundational base of the
different phases involved in compiler design and construction. It is achieved by way of
making the students implement simple programs related to the different phases associated
with the design of compilers . The programming is mostly done through C under Linux
Operating System, and LEX and YACC tools are also used

The programs implemented cover the following compiler phases which include: Lexical
Analysis, Syntax Analysis, Code optimization, Code Generation.

At the end of the lab course the student is equipped with a basic idea and practical
orientation of a simple compiler construction.

CSE Department, MJCET xii

Part II

Programs

Compiler Construction Lab Manual

Program 1

Scanner programs using C (Lexical Analysis)

Problem Definition

The Scanner is used to the analyse the source program by reading the input character by
character and grouping character into individual words and symbols.

Problem Description

The Scanner is a program which is responsible for transforming the source program into
a compact and uniform format (tokens).The tokens represent basic program entities such
as identifiers, Integers, reserve words, and delimiters.

The Scanner also removes white spaces (like newlines, tabs, blanks) and commands
from a program.

Explanation

main()

{

int sum =0;

int k = 11;

if (k <= 0)

sum = sum + k;

printf(\%d ",sum);

}

The scanner will scan the above program and splits into meaning full sequence of letters
called lexemes and for each lexeme it generates a token.

The different types of tokens in the above program are:

main, int, if (reserve words)

sum, k (identifiers)

=,<=,+ (operators)

{,},; (delimiters)

() (Parentheses)

CSE Department, MJCET 1

Compiler Construction Lab Manual

Psuedocode: The following is the code to implement a scanner:

typedef enum token-types
BEGIN, END, READ, WRITE, ID, INTLITERAL, LPAREN, RPAREN, SEMICOLON,
COMMA, ASSIGNOP, PLUSOP, MINUSOP, SCANOF token ;

extern token scanner (void);

#include<stdio.h>

#include<ctype.h>

extern char token_buffer [];

token scanner(void)

{

int in_char;

char c;

clear_buffer();

if(feof(stdin))

return SCANOF;

while((in_char=getchar())!=EOF)

{

if(isspace(in_char))

continue; /*doing nothing*/

else if(isalpha(in_char))

{

buffer=char (in_char);

for(c=getchar(); isalnum || c = =’_’ ; c=getchar())

buffer_char(c);

ungetc(c,stdin);

return check_reserved ();

}

else if(isdigit(in_char))

{

buffer_char(c);

ungetch(c,stdin);

return INTLITERAL;

}

else if(in_char==’(‘)

return LPAREN;

else if(in_char==’)‘)

return RPAREN;

else if(in_char==’;‘)

return SEMICOLON;

CSE Department, MJCET 2

Compiler Construction Lab Manual

else if(in_char==’,‘)

return COMMA;

else if(in_char==’+‘)

return PLUSOP;

else if(in_char==’:’)

{

/* looking for := */

c=getchar();

if(c==’=’)

return ASSIGNOP;

else

{

ungetc(c,stdin);

lexical_error(in_char);

}

else if(in_char==’_’)

{

/* is it comment start? */

c=getchar();

if(c==’_’)

{

do

in_char=getchar();

while(in_char != ’\n’);

}

else

{

unget(c,stdin);

return MINUSOP;

}

}

else

lexical_error (in_char);

}

}

}

CSE Department, MJCET 3

Compiler Construction Lab Manual

Input :
Program written in High level Language.

Output :

1. Uniform token representation of source program.

2. Tokens may be represented by integer values.

The output will be the input to the Parser for syntax analysis.

CSE Department, MJCET 4

Compiler Construction Lab Manual

Program 2

Scanner programs Using LEX

Problem Definition

The LEX Scanner is a tool that analyzes the source program by reading input program
and generates tokens.

Problem Description

LEX is a scanner generator. A LEXER takes a set of description of tokens and produces
a function in C language. The token descriptions that lex uses are known as regular
expressions. The lexer produced by lex is a C routine called yylex(). The output of lex
program is a C language program called: lex.yy.c.

Library /System Calls

The library associated with LEX is specified by the command –line option -ll. The
command for executing lex program is Lex file name . l

Psuedocode:

E [Ea]

Other Letter [A-DF-Za-df-z]

Digit [0-9]

Letter {E} | { OtherLetter }

IntLit {Digit}+

\%\%

[\t\n]+ { /*delete*/ }

[Bb][Ee][Gg][Ii][Nn] {minor=0;return(4);}

[Ee][Nn][Dd] {minor=0;return(5);}

[Rr][Ee][Aa][Dd] {minor=0;return(6);}

[Ww][Rr][Ii][Tt][Ee] {minor=0;return(7);}

{Letter}({Letter}|{Digit}|_)* {minor=0;return(1);}

{IntLit} {minor=1;return(2);}

({IntLit}[.]{IntLit})({E}[+-]?{IntLit})? {minor=2;return(2);}

\"([^\"\n]|\"\")*\n {stripquotes();minor=0,return(3);}

\"([^\"\n] | \"\")*\" {stripquotes();minor=3,return(2);}

\(\ {minor=0;return(8);}

\)" {minor=0;return(9);}

\;" {minor=0;return(10);}

\," {minor=0;return(11);}

\:=" {minor=0;return(12);}

\+" {minor=0;return(13);}

\-\ {minor=0;return(14);}

\%\%

CSE Department, MJCET 5

Compiler Construction Lab Manual

/* Strip unwanted quotes from string in yytext; adjust yyleng */

Void stripquotes(void)

{

int frompos,topos=0; numquotes=2;

for (frompos=1;frompos<yyleng ; frompos++)

{

yytext[topos++] = yytext[frompos];

if(yytext[frompos]=="" && yytext[frompos+1]=="")

{

frompos++;

numquotes++;

}

}

yyleng -= numquotes;

yytext[yyleng]=’\0’;

}

Input :
The input is a set of token specification in the form of regular expression as shown in
psuedocode.

Output :
The output is a C Language program, which will behave as lexical analyzer (scanner) for
the given language.

CSE Department, MJCET 6

Compiler Construction Lab Manual

Program 3

Finding FIRST and FOLLOW set of the production

Problem Definition

Computing FIRST AND FOLLOW set of the production

Problem Description

To compute FIRST(X) for all grammar symbols X, apply the following rules until no
more terminals or e can be added to any FIRST set.

1. If X is terminal, then FIRST(X) is X.

2. If X− >e is a production, then add e to FIRST(X).

3. If X is nonterminal and X− >Y1Y2...Yk is a production, then place a in FIRST(X)
if for

some i, a is in FIRST(Yi) and e is in all of FIRST(Y1),...,FIRST(Yi-1) that is,
Y1.......Yi-1=∗ >e. If e is in FIRST(Yj) for all j=1,2,...,k, then add e to FIRST(X).
For

example, everything in FIRST(Yj) is surely in FIRST(X). If y1 does not derive e,
then we add nothing more to FIRST(X), but if Y1=∗ >e, then we add FIRST(Y2)
and so on.

To compute the FIRST(A) for all nonterminals A, apply the following rules until nothing
can be added to any FOLLOW set.

1. Place inFOLLOW (S), whereSisthestartsymboland in the input right endmarker.

2. If there is a production A=>aBs where FIRST(s) except e is placed in FOL-
LOW(B).

3. If there is aproduction A− >aB or a production A− >aBs where FIRST(s) contains
e, then everything in FOLLOW(A) is in FOLLOW(B).

Code for finding FIRST:

#include<stdio.h>

#include<ctype.h>

int main()

{

int i,n,j,k;

char str[10][10],f;

CSE Department, MJCET 7

Compiler Construction Lab Manual

printf("Enter the number of productions\n");

scanf("%d",&n);

printf("Enter grammar\n");

for(i=0;i<n;i++)

scanf("%s",&str[i]);

for(i=0;i<n;i++)

{

f= str[i][0];

int temp=i;

if(isupper(str[i][3]))

{

repeat:

for(k=0;k<n;k++)

{

if(str[k][0]==str[i][3])

{

if(isupper(str[k][3]))

{

i=k;

goto repeat;

}

else

{

printf("First(%c)=%c\n",f,str[k][3]);

}

}

}

}

else

{

printf("First(%c)=%c\n",f,str[i][3]);

}

i=temp;

}

}

Output :
$./a.out
Enter the number of productions
3
Enter grammar
S− >AB
A− >a
B− >b
First(S)=a
First(A)=a

CSE Department, MJCET 8

Compiler Construction Lab Manual

First(B)=b

Code for finding FOLLOW:

#include<stdio.h>

main()

{

int np,i,j,k;

char prods[10][10],follow[10][10],Imad[10][10];

printf("enter no. of productions\n");

scanf("%d",&np);

printf("enter grammar\n");

for(i=0;i<np;i++)

{

scanf("%s",&prods[i]);

}

for(i=0; i<np; i++)

{

if(i==0)

{

printf("Follow(%c) = $\n",prods[0][0]);//Rule1

}

for(j=3;prods[i][j]!=’\0’;j++)

{

int temp2=j;

//Rule-2: production A->xBb then everything in first(b) is in

follow(B)

if(prods[i][j] >= ’A’ && prods[i][j] <= ’Z’)

{

if((strlen(prods[i])-1)==j)

{

printf("Follow(%c)=Follow(%c)\n",prods[i][j],

prods[i][0]);

}

int temp=i;

char f=prods[i][j];

if(!isupper(prods[i][j+1])&&(prods[i][j+1]!=’\0’))

printf("Follow(%c)=%c\n",f,prods[i][j+1]);

if(isupper(prods[i][j+1]))

{

repeat:

for(k=0;k<np;k++)

{

if(prods[k][0]==prods[i][j+1])

CSE Department, MJCET 9

Compiler Construction Lab Manual

{

if(!isupper(prods[k][3]))

{

printf("Follow(%c)=%c\n",f,prods[k][3]);

}

else

{

i=k;

j=2;

goto repeat;

}

}

}

}

i=temp;

}

j=temp2;

}

}

}

Output :
$./a.out
Enter the number of productions
3
Enter grammar
S− >AB
A− >a
B− >b
Follow(S)=S
Follow(A)=b
Follow(B)=Follow(S)

CSE Department, MJCET 10

Compiler Construction Lab Manual

Program 4

Top Down parsers

Problem Definition

Construct the recursive descent parser and parse it.

Problem Description

For construction of recursive descent parser we have to write a procedure for each non-
terminal that present in the grammar.

Code :

#include<stdio.h>

#include<stdlib.h>

char token;

int exp(void);

int term(void);

int fac(void);

void match(char etoken)

{

if (token==etoken)

token=getchar();

else

{

printf("ERROR\n");exit(1);

}

}

main()

{

token=getchar();

exp();

if (token==’\n’)

printf("SUCCESS\n");

else

printf("ERROR\n");

}

int exp(void)

{

term();

while((token==’+’) ||(token==’-’))

switch(token)

{

case ’+’: match(’+’);

CSE Department, MJCET 11

Compiler Construction Lab Manual

term();

break;

case ’-’: match(’-’);

term();

break;

}

}

int term(void)

{

fac();

while(token==’*’)

{

match(’*’);

fac();

}

}

int fac(void)

{

if (token==’(’)

{

match(’(’);

exp();

match(’)’);

}

else if(isdigit(token))

{

match(token);

}

else

{printf("ERROR\n");exit(1);}

Input :
2+3
Success
2+
Error

CSE Department, MJCET 12

Compiler Construction Lab Manual

Program 5

Bottom up Parsers (SLR PARSER)

Problem Definition

Construct SLR parsing table and parses it.

Problem Description

Simple LR parser or SLR parser reads a BNF grammar and constructs an LR(0)
state machine and computes the look-aheads sets for each reduction in a state.

SLR Parse Table Construction

• item

• item set

• closure (of items)

• goto

• set-of-items construction

• populating the table

Item

Given a production, A → XYZ, an LR(0) item is any string of the following form

A → . XYZ
A → X . YZ
A → XY . Z
A → XYZ .

- The dot means that the input has been seen up to the dot - could have been derived,
top down, to that point in the production.

- LR(0) item for A → ε is A → .

Closure(I), I is a set of items

1. I is in the closure of I Until fixed-point

2. if A → α. B β is in closure of I, then add B → . γ to the closure of I

CSE Department, MJCET 13

Compiler Construction Lab Manual

goto(I, X)
If A → α . X β is in I,
then
add A → α X. β J, Goto(I,X) = closure(J)

set-of-items construction

Let C be the sets-of-items (set of item sets)

1. C = closure(S’ → .S) until fixed-point

2. let c ε C and X a symbol of G’, add goto(c, X) to C

SLR table construction

1. Construct sets-of-items

2. Create action table,

• one row for each item-set, // which forms a state

• one column for each token + $

3. Create goto table

• same rows as action

• one column for nonterminal

Populate the action table:

The ith row, corresponds to the ith item set, Ii

1. If [A → α. a β] is in Ii, and goto(Ii,a) = Ij
• then set action[i,a] to shift j,

2. If [A → α .] is in Ii, and a is in Follow(A)
• then set action[i,a] to reduce A → α

3. If [S’ → S .] is in Ii,
• then set action[i,$] to accept

Populate the goto table

For each nonterminal A

If goto(Ii,A) = Ij
then goto[i,A]= j

CSE Department, MJCET 14

Compiler Construction Lab Manual

Follow Set for the non terminal associated with the reduction..

Algorithm :

The SLR parsing algorithm

Initialize the stack with S

Read input symbol

while (true)

if Action(top(stack), input) = S

NS $<-$ Goto(top(stack),input)

push NS

Read next symbol

else if Action(top(stack), input) = Rk

output k

pop $|$RHS$|$ of production k from stack

NS $<-$ Goto(top(stack), LHS_k)

push NS

else if Action(top(stack),input) = A

output valid, return

else

output invalid, return

Example

A grammar that can be parsed by an SLR parser is the following:

(0) S → E
(1) E → 1 E
(2) E → 1

Constructing the action and goto table as is done for LR(0) parsers would give the
following item sets and tables:

Item set 0
S → • E
E → • 1 E
E → • 1
Item set 1
E → 1 • E
E → 1 •
E → • 1 E
E → • 1
Item set 2
S → E •
Item set 3
E → 1 E •

CSE Department, MJCET 15

Compiler Construction Lab Manual

The action and goto tables:

Action goto
State 1 $ E
0 s1 2
1 s1 r2 3
2 Acc
3 r1

Input : An augmented grammar G’.

Output :The SLR parsing table functions action and goto for G’

Constructing Canonical LR Parsing Tables

Algorithm:

Step 1: Construction of the sets of LR(1) items

function closure(I);
begin

repeat
for each item [A → α. Bβ, a] in I,
each production B → γ in G’,
and each terminal b in FIRST(β a)
such that [B →. γ , b] is not in I do
add [B →. γ, b] to I

until no more sets of items can be added to I
end
return I
end;

Step 2:

function goto(I, X)
begin

let J be the set of items [A → X. β, a] such that
[A → X β, a] is in I
return closure(J)

end;

CSE Department, MJCET 16

Compiler Construction Lab Manual

Step 3:

procedure items(G’)
begin

C := closure(S’→. S,$);
repeat

for each set of items I in C and each grammar symbol X
such that goto(I , X) is not empty and not in C do
add goto(I , X) to C

until no more sets of items can be added to C
end;

Step 4: Construction of the canonical LR parsing table.

Method :

1. Construct C=I0,I1.,In, the collection of sets of LR(1) items for G’.

2. State I of the parser is constructed from Ii. The parsing actions for state I are
determined as follows :

a. If [A → α. a β, b] is in Ii, and goto(Ii, a) = Ij, then set action[i,a] to “shift
j.” Here, a is required to be a terminal.

b. If [A → α., a] is in Ii, A 6= S’, then set action[i,a] to “reduce A → α.”

c. If [S’→S.,$] is in Ii, then set action[i ,$] to “accept.” If a conflict results from
above rules, the grammar is said not to be LR(1), and the algorithm is said to
be fail.

3. The goto transition for state i are determined as follows: If goto(Ii , A)= Ij ,then
goto[i,A]=j.

4. All entries not defined by rules(2) and (3) are made “error.”

5. The initial state of the parser is the one constructed from the set containing item
[S’→.S, $].

Input: An augmented grammar G’.

Output: The canonical LR parsing table functions action and goto for G’.

CSE Department, MJCET 17

Compiler Construction Lab Manual

Example:

Consider the following augmented grammar:-
S’ → S
S → CC
C → Cc | d
The initial set of items is:-
I0 : S’ → .S , $
S → .CC, $
C → .Cc, c | d
C → .d, c | d
We have next set of items as:-
I1 : S’ → S., $
I2 : S → .Cc, $
C → .Cc, $
C → .d, $
I3 : C → c.C, $
C → .c C , c | d
C → .d, $
I4 : C → d. , c | d
I5 : S → CC. , $
I6 : C → c.C, $
C → .c C ,$
C → .d , $
I7 : C → d. , $
I8 : C → c C. , c | d
I9 : C → c C. , $

CSE Department, MJCET 18

Compiler Construction Lab Manual

Program 6

Parser program using YACC

Problem Definition

yacc is a parser generator. The name is an acronym for ”Yet Another Compiler Com-
piler.”

Problem Description

• It generates a parser (the part of a compiler that tries to make syntactic sense of
the source code) based on an analytic grammar written in a notation similar to
BNF. YACC generates the code for the parser in the C programming language.

• The parser generated by yacc requires a lexical analyzer. Lexical analyzer genera-
tors, such as Lex or Flex are widely available.

• YACC uses LALR(1) grammars with disambiguating rules.

• Every specification file consists of three sections: the declarations, (grammar) rules,
and programs. The sections are separated by double percent “%%” marks

In other words, a full specification file looks like

Declarations
%%
Rules
%%
programs

Library / System Calls

The library for running YACC program is specified by the option –ly. The command for
executing a YACC source file is : yacc filename . y

Program :

%{

include <stdio.h>

include <ctype.h>

int regs[26];

int base;

%}

CSE Department, MJCET 19

Compiler Construction Lab Manual

%start list

%token DIGIT LETTER

%left ’+’ ’-’

%left ’*’ ’/’

%left UMINUS /* supplies precedence for unary minus */

%% /* beginning of rules section */

list : /* empty */

| list stat ’\n’

| list error ’\n’

{ yyerrok; }

;

stat : expr

{ printf("%d\n", $1); }

;

expr : ’(’ expr ’)’

{ $$ = $2; }

| expr ’+’ expr

{ $$ = $1 + $3; }

| expr ’-’ expr

{ $$ = $1 - $3; }

| expr ’*’ expr

{ $$ = $1 * $3; }

| expr ’/’ expr

{ $$ = $1 / $3; }

| number

;

number : DIGIT

{ $$ = $1; base = ($1==0) ? 8 : 10; }

| number DIGIT

{ $$ = base * $1 + $2; }

;

%% /* start of programs */

yylex() {

int c;

CSE Department, MJCET 20

Compiler Construction Lab Manual

while((c=getchar()) == ’ ’) {/* skip blanks */ }

if(islower(c)) {

yylval = c - ’a’;

return (LETTER);

}

if(isdigit(c)) {

yylval = c - ’0’;

return(DIGIT);

}

return(c);

}

Input: 3+6

Output: 9

CSE Department, MJCET 21

Compiler Construction Lab Manual

Program 7

Intermediate Code generation

Problem Definition

To generate the intermediate code that is machine independent code to achieve portability
in compilers.

Problem Description

We could translate the source program directly into the target language. However, there
are benefits to having an intermediate, machine-independent representation.

• A clear distinction between the machine-independent and machine-dependent parts
of the compiler

• Retargeting is facilitated the implementation of language processors for new ma-
chines will require replacing only the back-end.

• We could apply machine independent code optimization techniques Intermediate
representations span the gap between the source and target languages

Code:

#define SIZE 50 /* Size of Stack */

#include <ctype.h>

char s[SIZE];

int top=-1; /* Global declarations */

push(char elem)

{ /* Function for PUSH operation */

s[++top]=elem;

}

char pop()

{ /* Function for POP operation */

return(s[top--]);

}

int pr(char elem)

{ /* Function for precedence */

switch(elem)

{

case ’#’: return 0;

case ’(’: return 1;

CSE Department, MJCET 22

Compiler Construction Lab Manual

case ’+’:

case ’-’: return 2;

case ’*’:

case ’/’: return 3;

}

}

main()

{ /* Main Program */

char infx[50],pofx[50],ch,elem;

int i=0,k=0;

printf("\n\nRead the Infix Expression ? ");

scanf("%s",infx);

push(’#’);

while((ch=infx[i++]) != ’\0’)

{

if(ch == ’(’) push(ch);

else

if(isalnum(ch)) pofx[k++]=ch;

else

if(ch == ’)’)

{

while(s[top] != ’(’)

pofx[k++]=pop();

elem=pop(); /* Remove (*/

}

else

{ /* Operator */

while(pr(s[top]) >= pr(ch))

pofx[k++]=pop();

push(ch);

}

}

while(s[top] != ’#’) /* Pop from stack till empty */

pofx[k++]=pop();

pofx[k]=’\0’; /* Make pofx as valid string */

printf("\n\nGiven Infix Expn: %s Postfix Expn: %s\n",infx,pofx);

}

Input:
a+b

output:
ab+

CSE Department, MJCET 23

Compiler Construction Lab Manual

Program 8

Code Optimization

Problem Definition

Optimization is the process of transforming a piece of code to make more efficient (either
in terms of time or space) without changing its output.

Problem Description

Classification of optimizations types

Optimizations that are performed automatically by a compiler or manually by the pro-
grammer, can be classified by various characteristics.

The ”scope” of the optimization:

1. Local optimizations - Performed in a part of one procedure.

a. Common sub-expression elimination (e.g. those occurring when translating
array indices to memory addresses.

b. Using registers for temporary results, and if possible for variables.

c. Replacing multiplication and division by shift and add operations.

2. Global optimizations - Performed with the help of data flow analysis (see below)
and split-lifetime analysis.

a. Code motion (hoisting) outside of loops

b. Value propagation

c. Strength reductions

3. Inter-procedural optimizations

PROGRAM

#include<stdio.h>

#include<string.h>

main()

{

char str[25][50], forLoopParam[90], rightHandParam[10][40],

leftHandParam[90];

int j=0,k=0,i=0,m=0,n=0,q=0,s=0;

int flag[10]={0},count[10]={0};

printf("\n Input the loop to be optimized:\n");

CSE Department, MJCET 24

Compiler Construction Lab Manual

/* PROCESSING FIRST LINE -- FOR DECLARATION*/

gets(str[0]);

while(str[k][i++]!=’;’);

while(str[k][i++]!=’;’);

while(str[k][i]!=’)’)

{

if(isalpha(str[k][i]))

forLoopParam[j++]=str[k][i];

i++;

}

i=0;

/* J IS INDEX TO CHANGEARRAY*/

/* PROCESSING SECOND LINE --{*/

puts(str[0]);

gets(str[0]);

while(str[0][i++]!=’{’);

puts(str[0]);

k=0;

while(gets(str[k]) && str[k][0]!=’}’)

{

while(str[k][i++]!=’=’);

leftHandParam[n++]=str[k][i-2];

k++;

i=0;

}

/*N IS INDEX TO TEMPCHANGE ARRAY*/

/* TEMPCHANGE ARRAY STORES LEFT SIDE PARAMETERS OF

ASSIGNMENT OPERATIONS */

for(m=0,i=0;m<k;m++)

{

while(str[m][i++]!=’=’);

while(str[m][i]!=’;’)

{

if(isalpha(str[m][i]))

rightHandParam[m][count[m]++]=str[m][i];

i++;

}

i=0;

CSE Department, MJCET 25

Compiler Construction Lab Manual

}

/* Q IS INDEX TO TEMP2*/

/* TEMP2 STORES RIGHT HAND SIDE PARAMETERS OF

STATEMENTS*/

/*COMPARING LEFT-HAND PARAMETERS WITH RIGHT-HAND

PARAMETERS*/

for(m=0;m<k;m++)

for(s=0;s<count[m];s++)

for(i=0;i<n;i++)

{

if(rightHandParam[m][s]==leftHandParam[i])

flag[m]=1;

}

//COMPARING LEFT-HAND SIDE PARAMETERS WITH FOR-LOOP

PARAMETERS

for(i=0;i<k;i++)

for(q=0;q<j;q++)

{

if(leftHandParam[i]==forLoopParam[q])

flag[i]=1;

}

//COMPARING RIGHT-HAND PARAMETERS WITH FOR-LOOP

PARAMETERS

for(m=1;m<k;m++)

for(s=0;s<count[m];s++)

for(i=0;i<j;i++)

{

if(rightHandParam[m][s]==forLoopParam[i])

}

//DISPLAYING STATEMENTS OF FOR LOOP WHICH CANT BE

//OPTIMIZED IN THE FOR LOOP

printf("the stmts that cant be optimized\n");

for(i=0;i<k;i++)

if(flag[i]==1)

puts(str[i]);

//DISPLAYING STATEMENTS OF FOR LOOP WHICH CANT BE

OPTIMIZED OUTSIDE FOR LOOP

CSE Department, MJCET 26

Compiler Construction Lab Manual

puts(str[k]); //DISPLAYING THE END-FLOWER BRACE

printf("the stmts that can be optimized");

for(i=0;i<k;i++)

if(flag[i]==0)

printf("\t\t %s \t\t",str[i]);

// puts(str[i]);

}

Input:

For(i=0;i<9;i++)

{

c=m+n;

i=i+12;

}

Output:

the stmts that cant be optimized

i=i+12;

the stmts that can be optimized

c=m+n;

CSE Department, MJCET 27

Compiler Construction Lab Manual

Program 9

CODE GENERATION

Problem Definition

Code generation is the process by which a compiler’s code generator converts some in-
ternal representation of source code into a form (e.g., machine code) that can be readily
executed by a machine.

Problem Description

The input to the code generator typically consists of a parse tree or an abstract syntax
tree. The tree is converted into linear sequence of instructions, usually in an intermediate
language such as three address code for example, the tree W := ADD(X,MUL(Y,Z))
might be transformed into a linear sequence of instructions by recursively generating the
sequences for t1 := X and t2 := MUL(Y,Z), and then emitting the instruction ADD W,
t1, t2.

PROGRAM :

#include<stdio.h>

char stk[100],stktop=-1,cnt=0;

void push(char pchar)

{

stk[++stktop]=pchar;

}

char pop()

{

return stk[stktop--];

}

char checkoperation(char char1)

{

char oper;

if(char1==’+’)

oper=’A’;

else if(char1==’-’)

oper=’S’;

else if(char1==’*’)

oper=’M’;

else if(char1==’/’)

oper=’D’;

else if(char1==’@’)

CSE Department, MJCET 28

Compiler Construction Lab Manual

oper=’N’;

return oper;

}

int checknstore(char check)

{

int ret;

if(check!=’+’ && check!=’-’ && check!=’*’ && check!=’/’

&& check!=’@’)

{

push(++cnt);

if(stktop>0)

printf("ST $%d\n",cnt);

ret=1;

}

else

ret=0;

return ret;

}

int main()

{

char msg[100],op1,op2,operation;

int i,val;

while(scanf("%s",msg)!=EOF)

{

cnt=0;

stktop=-1;

for(i=0;msg[i]!=’\0’;i++)

{

if((msg[i] >=’A’ && msg[i]<=’Z’) ||(msg[i]>=’a’

&& msg[i]<=’z’))

push(msg[i]);

else

{

op1=pop();

op2=pop();

printf("L %c\n",op2);

operation=checkoperation(msg[i]);

printf("%c %c\n",operation,op1);

val=checknstore(msg[i+1]);

while(val==0)

{

op1=pop();

cnt--;

CSE Department, MJCET 29

Compiler Construction Lab Manual

if(operation==’S’&&stktop>=-1)

{

printf("N\n");

operation=’A’;

}

printf("%c %s\n",operation,op1);

val=checknstore(msg[i+1]);

}//while

}//else

}//for

}//while

}//main

Input: AB+

Output: L B
A A

CSE Department, MJCET 30

Compiler Construction Lab Manual

Annexure – I

List of programs according to syllabus(Osmania University).

1. Scanner programs using C.

2. Scanner programs using LEX.

3. Finding FIRST set and FOLLOW set of the production.

4. Top Down Parsers.

5. Bottom up Parsers

6. Parser programs using YACC.

7. Intermediate code generation

8. code optimization.

CSE Department, MJCET 31

