
MUFFAKHAM JAH COLLEGE OF ENGINEERING AND
TECHNOLOGY

Banjara Hills, Hyderabad, Telangana

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

C Programming Laboratory Manual

Academic Year 2016-2017

Table of Contents

I Contents
1. Vision of the Institution . i
2. Mission of the Institution . i
3. Department Vision . ii
4. Department Mission . ii
5. Programme Education Objectives . iii
6. Programme Outcomes . iv
7. Programme Specific Outcomes . v
8. Introduction . vi

II Programs
1. Sinx and Cosx values using series expansion 1
2. Frequency of Occurrence of Characters and special characters in a piece

of text. 3
3. Write a C program that performs Bubble Sort with an array. 5
4. Write C programs to perform - a) Linear Search and b) Binary Search . . 7
5. Write a C program (with pointers) to perform - a. Matrix Addition

b. Matrix Multiplication . 8
6. Generation Of Address Labels Using Structures 12
7. Sequential File Operations . 14
8. Write a C++ program for finding maximum, minimum and sum of given

set of numbers . 15
9. Write a C++ program for implementing a matrix class. 17
10. Write a C++ program for Classes for Bank Account, Student information,

Library catalog. 18
11. Write a C++ program to Create a Complex Class with Operator Over-

loading. 20
12. Write a C++ program to Creation of inheritance hierarchy for graphic

shapes. 21
13. Write a C++ program Template functions for min() and max() for finding

minimum and maximum in a list of numbers. 23
14. Write a C++ program for Finding number of characters, words and sen-

tences in a given text. 24
15. Write a C++ program to Write Error Handling Code using Exceptions . 25

Part I

Contents

1. Vision of the Institution

To be part of universal human quest for development and progress by contributing high
calibre, ethical and socially responsible engineers who meet the global challenge of build-
ing modern society in harmony with nature.

2. Mission of the Institution

• To attain excellence in imparting technical education from undergraduate through
doctorate levels by adopting coherent and judiciously coordinated curricular and
co-curricular programs.

• To foster partnership with industry and government agencies through collaborative
research and consultancy.

• To nurture and strengthen auxiliary soft skills for overall development and improved
employability in a multi-cultural work space.

• To develop scientific temper and spirit of enquiry in order to harness the latent
innovative talents.

• To develop constructive attitude in students towards the task of nation building
and empower them to become future leaders

• To nourish the entrepreneurial instincts of the students and hone their business
acumen.

• To involve the students and the faculty in solving local community problems through
economical and sustainable solutions.

i

3. Department Vision

To contribute competent computer science professionals to the global talent pool to meet
the constantly evolving societal needs.

4. Department Mission

Mentoring students towards a successful professional career in a global environment
through quality education and soft skills in order to meet the evolving societal needs.

ii

5. Programme Education Objectives

1. Graduates will demonstrate technical skills and leadership in their chosen fields of
employment by solving real time problems using current techniques and tools.

2. Graduates will communicate effectively as individuals or team members and be
successful in the local and global cross cultural working environment.

3. Graduates will demonstrate lifelong learning through continuing education and pro-
fessional development.

4. Graduates will be successful in providing viable and sustainable solutions within
societal, professional, environmental and ethical contexts

iii

6. Programme Outcomes

1. Engineering knowledge: Apply the knowledge of mathematics, science, engi-
neering fundamentals and an engineering specialization to the solution of complex
engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze
complex engineering problems reaching substantiated conclusions using first prin-
ciples of mathematics, natural sciences, and engineering sciences.

3. Design/development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the specified needs
with appropriate consideration for the public health and safety, and the cultural,
societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge
and research methods including design of experiments, analysis and interpretation
of data, and synthesis of the information to provide valid conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques, resources,
and modern engineering and IT tools including prediction and modeling to complex
engineering activities with an understanding of the limitations.

6. The engineer and society: Apply reasoning informed by the contextual knowl-
edge to assess societal, health, safety, legal and cultural issues and the consequent
responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and demonstrate the
knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and responsi-
bilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a mem-
ber or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities with
the engineering community and with society at large, such as, being able to com-
prehend and write effective reports and design documentation, make effective pre-
sentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and understanding
of the engineering and management principles and apply these to one’s own work,
as a member and leader in a team, to manage projects and in multidisciplinary
environments.

12. Lifelong learning: Recognize the need for, and have the preparation and ability to
engage in independent and lifelong learning in the broadest context of technological
change.

iv

7. Programme Specific Outcomes

The graduates will be able to:

PSO1: Demonstrate understanding of the principles and working of the hardware and
software aspects of computer systems.

PSO2: Use professional engineering practices, strategies and tactics for the development,
operation and maintenance of software

PSO3: Provide effective and efficient real time solutions using acquired knowledge in vari-
ous domains.

v

Programming in C & C++ Lab Manual

8. Introduction

• Computer program is designed to solve problem. Nowadays it makes ease a lot of
our works.

• The simple steps to find a solution to problems are the same steps used to write a
program and basically can be defined as follows:

1. Define the problem.

2. Devise a plan to solve it.

3. Implement the plan.

4. Test the result to see whether the problem is solved.

• When creating a program in C/C++:

1. Determine the objectives of the program.

2. Decide which method the program will use to solve the problem while preparing
the pseudocode or flowchart.

3. Translate this pseudo code or flowchart into a computer program using the
C/C++ language.

4. Run and test the program.

The objective of this lab is to introduce the student to programming. This is done by
writing several programs in C, C++ and discussing how to compile, link, and execute
them on Linux. Programs 1-8 of the curriculum are to be developed in C language whereas
9-16 are to be developed in C++. It is assumed that the student has no prior knowledge of
C/C++. However, the student must allocate significant time to read suggested materials.
The student is expected to work on as many examples as possible.

Minimum Hardware Requirements

• 1 Ghz Pentium IV

• 256 MB RAM

• 1 GB Disk space

Minimum Software Requirements

• Operating System like Linux or Windows XP

• C++ compiler or Turbo C.

CSE Department, MJCET vi

Part II

Programs

Programming in C & C++ Lab Manual

Program 1

Sinx and Cosx values using series expansion

Problem Definition

Finding out Sinx , cosx values using a C program.

Problem Objective

To practice the concept of loops.

Problem Description

We can evaluate sinx, cosx using the following series expansion.

Sinx = x – x
3/3! + x

5/5! – x
7/7! + . . .

Cosx = 1 – x
2/2! + x

4/4! – x
6/6! + . . .

SINE FUNCTION COMPUTATION

ALGORITHM:

STEP 1: [START]

BEGIN

STEP 2: [INPUT NO: OF TERMS UP TO WHICH THE VALUE OF SIN(X) SHOULD BE

EVALUATED IN SERIES \& X IN RADIANS]

READ N,X.

STEP 3: [SET UP INITIAL CONDITIONS FOR FIRST TERM THAT CANNOT BE

CALCULATED ITERATIVELY]

TSIN <- X

TERM <- X.

I <- 1

ERROR <- 10-6

COUNT <- 1

STEP 4: [REPEAT]

REPEAT STEP5, STEP6, STEP7

UNTIL COUNT $<$= N AND TERM $<$ ERROR.

STEP 5: [GENERATE NEXT TERM]

TERM <- (-) TERM *X*/I*(I-1)

CSE Department, MJCET 1

Programming in C & C++ Lab Manual

STEP 6: [GENERATE THE CURRENT SUM]

TSIN <- TSIN + TERM.

STEP7: [UPDATE THE VALUE OF I \& COUNT]

I <- I + 2

COUNT <- COUNT + 1

STEP 6: [STOP]

END

NOTE:- Similarly calculate the value of cos(x) = 1-x2/2!+x
4/4!-x6/6!. . . .

HINT : SUM=1, TERM=1.

Input:
For example x = 30 (in degrees), n = 10

Output:
Sinx = 0.50
Cosx = 0.666666

Validation/Result:
The program must take input ‘x’ in radians and then substitute the value in the equation.

CSE Department, MJCET 2

Programming in C & C++ Lab Manual

Program 2

FREQUENCY OF OCCURRENCE OF CHARACTERS AND SPECIAL
CHARACTERS LIKE $n,$t, WHITE SPACESS

Problem Definition

The student has to determine the frequency of occurrence of characters and special char-
acters in a piece of text.

Problem Objective:

Make the student practice the concept of Special Characters.

Problem Description

Initially the program takes count of words, spaces, Lines, Tabs & Characters as zero,
we read the contents of the file character by character, based upon the character that is
scanned we increase the count of the respective type of characters.

ALGORITHM

STEP 1: STORE THE INPUT TEXT IN A FILE

STEP 2: [INITIALIZE THE COUNTER]

WORD <- 0, SPACE <- 0, LINES <- 0, TABS <- 0,

CHARACTERS <- 0

STEP 3: [OPEN THE INPUT TEXT FILE IN READ MODE]

READ IT CHARACTER BY CHARACTER AND UPDATE THE

SPECIFIC COUNT BY COMPARING THE CHARACTERS AS

FOLLOWS:-

IF(CH=LINE)

THEN

BEGIN

LINES <- LINES+1

WORD <- WORD+1;

CHARACTERS <- CHARACTERS+1

END

IF(CH=’TAB’)

THEN

BEGIN

TABS <- TABS+1

WORDS <- WORDS+1

CHARACTERS <- CHARACTERS+1

CSE Department, MJCET 3

Programming in C & C++ Lab Manual

END

IF (CH=’ ‘)

THEN

BEGIN

SPACES <- SPACES+1

WORDS <- WORDS+1

CHARACTERS <- CHARACTERS+1

END

STEP 4: [UPDATE CHARACTERS IN NEITHER OF ABOVE CASES]

CHARACTERS <- CHARACTERS+1

STEP 5: [CLOSE THE FILE USING THE FILE POINTER]

CLOSE FILE_POINTER

STEP 6: [PRINT THE COUNTS]

PRINT WORDS, CHARACTERS, LINES, SPACES, TABS.

STEP 7: [STEP]

END.

Input: $vi file1.txt

Output: $ Words 5 characters 10 lines 2 spaces 4 tabs 0

Conclusion: The desired results are achieved.

CSE Department, MJCET 4

Programming in C & C++ Lab Manual

Program 3

Write a C program that performs Bubble Sort with an array.

Problem Definition

Sorting is defined as arrangement of set of elements in an order.

Problem Description

To arrange an array in ascending or descending order using bubble sort .

• Compare the adjacent elements in a list to see that the highest or lowest vale element
in the list bubbles up to occupy its proper position.

• In ascending order Lowest element bubbles up to occupy one position high in the
list with every iteration.

• Compare (a[I] > a[I+1]) exhauastively and if true exchange elements.

• Make n-I comparisons in each iteration , number of iterations = n-1 with exchanges

• In descending order highest element bubbles up to occupy one position high in the
list with every iteration.

• With every iteration atleast one element gets sorted , therefore the number of
comparisons gets reduced by 1 each time.

ALGORITHM:

STEP 1: [START]

BEGIN

STEP 2: [INPUT VALUE OF NUMBER OF ELEMENTS IN THE ARRAY]

READ N

READ A[I] I=1,2,3,....N.

STEP 4: [INITIALIZE]

I <- 1

STEP 5: [REPEAT]

REPEAT THE STEPS STEP6, STEP7, STEP8 UNTIL I<=(N-1)

STEP 6: [INITIALIZE]

J <- 1

STEP 7: [REPEAT]

REPEAT STEP8 UNTIL(J<=N-1)

STEP 8: [COMPARE]

IF(A[J]<A[J-1]

BEGIN

TEMP <- A[J]

CSE Department, MJCET 5

Programming in C & C++ Lab Manual

A[J] <- A[J+1]

A[J+1] <- TEMP

END

STEP 9: [OUTPUT]

PRINT THE SORTED ARRAY

STEP 10: [STOP]

END.

Input: n = 6 (Size of Array)

56 23 90 14 67 12

(Before sort: a[0] = 56, a[1] = 23, a[2] = 90, a[3] = 14, a[4] = 67, a[5] = 12)

Output:

SORTED LIST: 12 14 23 56 67 90

(After sort: a[0] =12, a[1] =14, a[2] = 23, a[3] = 56, a[4] = 67, a[5] = 90)

Conclusion: The desired results are achieved.

CSE Department, MJCET 6

Programming in C & C++ Lab Manual

Program 4

Write C programs to perform - a) Linear Search and b) Binary Search

Problem Definition

To search an element in a given list.

Problem Description

Linear Search:

The element to be searched is called search key(sk).

Compare the first element with the rest of the elements in the list one after the other.
(a[i] is equal to sk, i = 0 to n)

If the sk matches with the array element then search is successful search otherwise search
is unsuccessful.

Note: Best case: Sk found in first comparison.

Worst case: sk present at the end of the list then n-comparisons.

Average case: sk present in the middle of the list.

Binary search:

1. Read the size of array and search key(sk).

2. Sort the list.

3. Divide the list by determining the middle element.

4. If sk < mid-value search in the first half of the list discarding the other half from
consideration.

5. If sk > mid-value search in the second half of the list discarding the other half from
consideration.

6. Repeat dividing the list (further either the first half or the second half) until sk =
mid-value.

7. If sk is found search is successful otherwise search is unsuccessful.

Note: Better performance compared to linear search but applicable only on sorted lists.

Input: n = 6 (Size of Array)

56 23 90 14 67 12
sk = 90

Output: Search key found at 3rd position in the list.

CSE Department, MJCET 7

Programming in C & C++ Lab Manual

Program 5

Write a C program (with pointers) to perform - a. Matrix Addition
b. Matrix Multiplication

Problem Definition

To write a program for Matrix Addition.

Problem Description

To practice the concept of loops, 2D arrays.

1. Read any two one dimensional arrays. (a and b)

2. Add corresponding index elements in the arrays.

3. Store the result in the corresponding index element in the result matrix

Allocate memory for every matrix using a = (int *)malloc(n * sizeof(int)); where int *a;
Use similar declaration and statement of allocation of second matrix and result matrix.
Any element is accessed by the following notation using pointers: *(a + i* n + j) where

• a is a pointer (int *a;)

• n = no: of columns of matrix (whose base address is a)

• Repeat until number of rows

• Repeat until the number of columns

• *(c+i*n+j) = *(a+i*n+j) +*(b+i*n+j)

ALGORITHM FOR ADDITION OF MATRICES :

STEP 1 : [START]

BEGIN

STEP 2 : [READ NO : OF ROW & COLUMN]

READ R,C

STEP 3 : [INPUT A MATRIX]

READ MATRIX A

FOR I=0 TO R

FOR J=0 TO C

READ A[I,J]

STEP 4 : [INPUT B MATRIX]

READ MATRIX B

FOR I=0 TO R

CSE Department, MJCET 8

Programming in C & C++ Lab Manual

FOR J=0 TO C

READ B[I,J]

STEP 5 : [FIND SUM OF MATRICES AND STORE IN RESULT MATRIX C]

FOR I=0 TO R

FOR J=0 TO C

C[I,J]=A[I,J]+B[I,J]

STEP 6 : [OUTPUT THE RESULT MATRIX ‘C’]

FOR I=0 TO R

FOR J=0 TO C

PRINT C[I,J]

STEP 7 : [STOP]

END

Input:

rows = 3

cols = 3

a = |1 2 3| b = |0 0 0|

|4 5 6| |0 0 0|

|7 8 9| |0 0 0|

Output:

c = |1 2 3|

|4 5 6|

|7 8 9|

CSE Department, MJCET 9

Programming in C & C++ Lab Manual

b) Matrix Multiplication:

Problem Definition

To write a program for Matrix Multiplication:

Problem Description

1. Read any two 2-dimensional arrays. (a and b)

2. Multiply both matrices if no: of rows of a = no: of columns of b.

3. Multiply each row of first array with every column of the Second array.

4. Store the result in the corresponding index element in the result matrix.

Hint: Repeat for each row in first Matrix (j <= rows of a)
Repeat for each of column of second Matrix (j < = columns of b)
Repeat for each element in every column of second Matrix (k <= rows of a OR columns
of b) *(c+i*n+j) = (c+i*n+j) + *(a+i*n+k) +*(b+i*n+j)

MULTIPLICATION OF MATRICES

ALGORITHM:

STEP 1: [START]

BEGIN

STEP 2: [INPUT ORDER OF THE TWO MATRICES A & B]

READ M, N, P, Q

STEP 3: [INPUT MATRIX A & MATRIX B]

FOR I = 0 TO M

FOR I = 0 TO N

READ A

FOR I = 0 TO P

FOR I = 0 TO Q

READ B

STEP 4: [FIND THE PRODUCT OF A & B]

FOR I = 0 TO M

FOR I = 0 TO N

C [I , J] = 0

FOR K = 0 TO N

*(C+I*N+J) = (C+I*N+J) + *(A+I*N+K) +*(B+I*N+J)

STEP 5: [OUTPUT THE RESULT MATRIX]

FOR I = 0 TO M

CSE Department, MJCET 10

Programming in C & C++ Lab Manual

FOR I = 0 TO Q

PRINT C [I , J]

STEP 6: [STOP]

END.

Input:

rows = 3

cols = 3

a = |1 2 3| b = |1 0 0|

|4 5 6| |0 1 0|

|7 8 9| |0 0 1|

Output:

c = |1 2 3|

|4 5 6|

|7 8 9|

Conclusion: The desired results are achieved.

CSE Department, MJCET 11

Programming in C & C++ Lab Manual

Program 6

GENERATION OF ADDRESS LABELS USING STRUCTURES

Problem Definition

Display the name, age, designation, address & pincode of a person.

Problem Description

To practice the concept of structures.

ALGORITHM :

STEP 1: [DEFINE A STRUCTURE TYPE THAT CONTAINS PERSON NAME,

AGE, DESIGNATION, ADDRESS AND PIN CODE].

RECORD PERSON

BEGIN

P_NAME

P_DESIG

P_ADDRESS

P_PIN

END

STEP 2: [READ THE NUMBER OF LABELS TO BE GENERATED.

INFORMATION FOR EACH PERSON].

READ N

STEP 3: [USING THIS STRUCTURE READ THE INFORMATION OF EACH PERSON]

STEP 4: PRINT THE LABEL OF EACH PERSON

A) ONE BY ONE AND

B) PRINT TWO LABELS AT A TIME.

/*Pseudo Code*/

Structure is only a template to represent information we can

declare the structure variables as following

struct tag name V1,V2;

Accessing members in a structure:-

Ex: struct person

{

char name[15];

char desig[15];

CSE Department, MJCET 12

Programming in C & C++ Lab Manual

int age;

float salary;

}p;

p .name = "xyz";

p.desig = "teacher";

p.age = 25;

p.salary = 10000.00;

scanf() can be used to read the values like

scanf(\%s",p.name);

scanf(\%d",&p.age);

Array of structures:

struct person p1[10];

for (i=0; i<10; i++)

{

Scanf(\%s",p1[i] . title);

}

Conclusion: The desired results are achieved.

CSE Department, MJCET 13

Programming in C & C++ Lab Manual

Program 7

SEQUENTIAL FILE OPERATIONS

Problem Definition

A file whose contents are accessed sequentially is called a sequential acess file.

Problem Description

To practice the concepts of Sequential Files.

A file is created and saved. Then it is accessed through a C program. Various operations
like opening a file, copying the contents of a file in to another file, displaying the contents
of a file on a monitor, merging two files into a new file can be done.

ALGORITHM :

STEP 1: [START]

BEGIN

STEP 2: [OPEN A FILE IN WRITE MODE WITH THE NAME \INPUT"]

OPEN THE FILE WITH FILE_POINTER F1.

(USE: f1 = fopen (\input" , \w");)

STEP 3: [WRITE DATA INTO THE FILE BY READING FROM KEYBOARD]

UNTIL IF IS NOT END OF FILE.

STEP 4: [CLOSE THE FILE]

CLOSE THE FILE WITH FILE_POINTER F1

STEP 5: [OPEN THE SAME FILE IN READ MODE]

F1 = FOPEN(\ INPUT \ , "R") ;

STEP 6: [OUTPUT ITS CONTENTS TO THE SCREEN]

PRINT DATA FROM FILE USING FORMATTED OR UNFORMATTED FUNCTIONS

(USE: printf(), puts(), putch())

STEP 7: [CLOSE THE FILE]

CLOSE THE FILE WITH FILE_POINTER F1

STEP 8: [STOP]

END.

Note: Similar Programs can be implemented to copy a file into another and

compare any two files.

CSE Department, MJCET 14

Programming in C & C++ Lab Manual

Program 8

Finding Maximum, Minimum and Sum of given set of Numbers Using C++.

Problem Description

To apply the cin, cout commands and arrays.

ALGORITHM :

STEP 1 : [START]

BEGIN

STEP 2 : [INPUT THE TOTAL NUMBER OF ELEMENTS IN LIST]

READ N

STEP 3 : [INPUT THE FIRST ELEMENT IN THE LIST]

READ FIRST

STEP 4 : [SET TEMPORARY MAXIMUM]

MAX = FIRST

COUNT = 1

STEP 5 : [REPEAT]

REPEAT STEPS STEP6, STEP7, UNTIL COUNT <N.

STEP 6 : [READ NEXT ELEMENT IN THE LIST]

READ NEXT

COUNT <- COUNT + 1

STEP 7 : [COMPARE NEXT ELEMENT WITH PREVIOUS MAXIMUM

NUMBER AND UPDATE MAXIMUM]

IF (NEXT > MAX)

MAX <- NEXT

STEP 8 : [OUTPUT THE MAXIMUM ELEMENT]

PRINT MAX

STEP 9 : [STOP]

END.

CSE Department, MJCET 15

Programming in C & C++ Lab Manual

Class Structure:

class SumMaxMin

{

private :

int a[10];

int n;

public :

void readElements () ;

int getMax () ;

int getMin () ;

int getSum () ;

}

NOTE: Similarly calculate the minimum number using NEXT¡ MIN (IN PLACE OF
MAX)

DESCRIPTION:

Data Members:
int a[10] :- for storing n numbers.
int n :- for storing size value.
Member Functions :

1. void readElements ():- This method is responsible for reading value of size and
elements from the user and storing in ”n” and in array ”a” respectively.

2. int getMax () :- Responsible for returning maximum value of given ”n” numbers.

3. int getMin () :- Responsible for returning minimum value of given ”n” numbers.

4. int getSum ():- Responsible for returning Sum value of given ”n” numbers.

Conclusion: The desired results are achieved.

CSE Department, MJCET 16

Programming in C & C++ Lab Manual

Program 9

Implementation of a matrix class Using C++.

Problem Description

To practice the concepts of classes.

Class Structure:

class Matrix

{

private :

int a[10] [10];

int rows, columns;

public:

Matrix (int , int) ;

void readElements () ;

}

DESCRIPTION:

Data Members:

1. int a[10] [10] :- Two-Dimensional Array used to store matrix elements.

2. int rows, columns :-Variables used to store the order of Matrix.

Member Functions:

1. Matrix (int , int) :- Constructor with 2 arguments which accepts row and column
value. Optionally, we can have default constructor and a setOrder (int , int)
function that can be used to set the order of matrix.

2. void readElements () :- Resposible for accepting elements from user and storing it
in array ”a”.

3. void displayElements () :- Resposible for Displaying elements of matrix stored in
array ”a”.

4. Matrix operator+ (Matrix) :- operator ’+’ being overloaded to work with Matrix
objects.

5. Matrix operator* (Matrix) :- operator ’*’ being overloaded to work with Matrix
objects.

CSE Department, MJCET 17

Programming in C & C++ Lab Manual

Program 10

Classes for Bank Account, Student information, Library catalog.

a) Class Structure for Student:

class Student

{

private :

int rollno ;

char name [25] ;

char branch[25] ;

public :

void setDetails (int , char * , char *) ;

void getDetails () ;

};

b) Class Structure for BankAccount :

class BankAccount

{

private :

int accno;

char name[25];

float balance;

public :

BankAccount (int , char * , float = 0.0) ;

void deposit (float dAmt) ;

void withdraw (float wAmt) ;

float getBalance () ;

};

c) Class Structure for Library :

class Library

{

private :

int cardno ;

char name [25 ;

char slot [2] [30] ;

/* Assuming two book slots are allowed on a card. A book name indicates

CSE Department, MJCET 18

Programming in C & C++ Lab Manual

slot is used otherwise A null value indicates slot is empty.*/

public :

Library (int , char *) ;

bool issueBook (char *bookName) ;

bool returnBook (int slotNumber) ;

// slotNumber can take either a value 0 or 1.

int isSlotAvailable ();

/* if not returns -1, if there is then returns 0 or 1 is return based on

which slot is available.*/

void showStatus () ; // Display status of slots.

};

CSE Department, MJCET 19

Programming in C & C++ Lab Manual

Program 11

Create a Complex Class with Operator Overloading.

Problem Description

To apply the concepts of operator overloading.

Class Structure:

class Complex

{

private :

int real ;

int imaginary ;

public:

void setNumber (int , int) ;

void display();

Complex operator+ (Complex) ;

Complex operator- (Complex) ;

Complex operator* (Complex) ;

};

DESCRIPTION :

Data Members :

1. int real :- Variable used to store real value of a complex number.

2. int imaginary :- Variable used to store imaginary value of a complex number.

Member Functions :

1. void setNumber (int , int) :- Responsible for forming a complex number.

2. void display() :- Responsible for displaying a complex number.

3. Complex operator + (Complex) :- Overloading ’+’ operator to add two Complex
objects (numbers).

4. Complex operator - (Complex) :- Overloading ’-’ operator to subtract two Complex
objects (numbers).

5. Complex operator * (Complex) :- Overloading ’*’ operator to subtract two Com-
plex objects(numbers).

Conclusion : The desired results are achieved

CSE Department, MJCET 20

Programming in C & C++ Lab Manual

Program 12

Creation of inheritance hierarchy for graphic shapes.

Problem Description

To apply the concepts of inheritance.

Class Structure:

class Shape

{

public:

virtual void area() = 0;

};

class Square : public Shape

{

private:

int side;

public:

Square (int =10) ;

void area ()

{

cout<<side*side;

}

};

DESCRIPTION :

• This program is based on the concept of run-time polymorphism. (Function Over-
riding).

• In this method, C++ compiler executes a function by selecting the it at the time
of function call (run-time).

• When the signatures of any two functions are same in the base class and derived
class then the C++ compiler will be in an ambiguity to select the function from
base class or the derived class.

• The solution is to use a pointer to decide at run-time which method is called. The
problem to the suggested solution is that the pointer of a base class always refers to
the method inside base class whereas a pointer to the derived class can never refer
to the base class method (since the hierarchy of calls is to be maintained)

CSE Department, MJCET 21

Programming in C & C++ Lab Manual

• Therefore the possible solution is to use the concept of function overriding in which
the base class method is declared with the keyword “virtual” and the pointer of
the base class is then allowed to refer to the derived class method with the same
pointer.

main ()

{

Shape *p;

Square s;

p = &s ;

p -> area() ; // calls area() of Square class.

Rectangle r ;

p = &r ;

p -> area (); // calls area() of Rectangle class.

}

Conclusion : The desired results are achieved.

CSE Department, MJCET 22

Programming in C & C++ Lab Manual

Program 13

Template functions for min() and max() for finding minimum and
maximum in a list of numbers.

Problem Description

To practice the concepts of function templates.

Class Structure:

template<class T>

class MaxMin

{

private :

T a[10];

int n;

public :

void readElements();

T max();

T min();

};

DESCRIPTION :

Data Members :

1. T a[10] :- Array a for storing n numbers of type based on template.

2. int n :- n for storing array size value.

Member Functions :

1. void readElements () :- Responsible for Accepting size value and that many ele-
ments from the user and storing it in ”n” and in array ”a” respectively.

2. T max () :- Responsible for returning maximum value from given ”n” numbers.

3. T min () :- Responsible for returning minimum value from given ”n” numbers.

Conclusion : The desired results are achieved.

CSE Department, MJCET 23

Programming in C & C++ Lab Manual

Program 14

Finding number of characters, words and sentences in a given text.

Class Structure :

class Text

{

private :

char str [100] ;

public :

void setText (char *) ;

void displayText () ;

int countCharacters () ;

int countWords () ;

int countSentences () ;

};

DESCRIPTION :

Data Members :
char str [100] :- Used for storing given text.

Member Functions :

1. void setText (char *) :-Responsible for setting accepted string into str.

2. void displayText () :- Resposible for displaying the text whose nature is being
determined.

3. int countCharacters () :-Responsible for Counting characters in given string ”str”
and returning that value.

4. int countWords () :- Responsible for Counting Words in given string ”str” and
returning that value.

5. int countSentences () :- Responsible for Counting Sentences in given string ”str”
and returning that value.

Conclusion : The desired results are achieved.

CSE Department, MJCET 24

Programming in C & C++ Lab Manual

Program 15

Program to Write Error Handling Code using Exceptions

Problem Description

To apply the concept of exception handling in C++ programming.

Class Structure :

try

{

c=a/b;

}

throw c;

Catch(type c)

{

}

Conclusion : The desired results are achieved.

CSE Department, MJCET 25

